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Abstract. Random mappings from a finite set into itself are either a heuristic or an exact 
model for a variety of applications in random number generation, computational number theory, 
cryptography, and the analysis of algorithms at large. This paper introduces a general framework 
in which the analysis of about twenty characteristic parameters of random mappings is carried 
out: These parameters are studied systematically through the use of generating functions and 
singularity analysis. In particular, an open problem of Knuth is solved, namely that of finding 
the expected diameter of a random mapping. The same approach is applicable to a larger 
class of discrete combinatorial models and possibilities of automated analysis using symbolic 
manipulation systems (“computer algebra”) are also briefly discussed. 

1 Introduction 

Random maps occur in many problems of discrete probability. Consider for instance the following 

assertions: , 

1. Throw n balls into m urns at random. Then, a proportion of about e+/” of the urns will 
usdly be empty. [Hashing]. 

2. A room contains 23 persons. It is a good idea (the odds are 50.7% in your favour!) to bet that 

two persons in the room have the same birthdate. [Birthday paradox]. 

3. You buy chocolate bars that contain coupons and there are n different possible coupons. Expect 

to buy (and possibly eat!) about nlogn chocolate bars in order to obtain a full collection. 

[Coupon collector problem]. 

4. When using a middlesquare random number generator (or some other “randomly” designed 

random number generator) operating with e digits, the generator is likely to cycle after about 

ZLi2 steps. [“Random” random number generators]. 

5. Pollard’s integer factorization algorithm is likely to find a factor of a composite integer 7~ within 

E n114 steps. [Pollard’s rho-method]. 

6. There are n spies that attend a cryptography conference and leave their hats at the cloakroom. 

When the lecture is over, each spy picks up a hat at random. Then, there is a probability close 

to e-i that nobody has his hat on his head. [Derangement problem]. 

These assertions are all classical. A moment’s reflection shows that they convey some information 

on (random) functions from a finite set to a finite set. We thus let ?‘:“” denote the collection of 

all functions from a &rite nset domain to a finite m-set range, and use Fn s F2n’ to denote the 

special case where m = n, in which situation we merely consider an arbitrary function of a finite set 
into itself. 

Situations where we deal with F:“” are commonly known as occupancy problems in discrete 
probability theory. Models where we consider random elements of F,, are known as random mappings 
models. 

J.J. Quisquater and J. Vandewalle (Eds.): Advances in Cryptology - EUROCRYPT ‘89, LNCS 434, pp. 329-354, 1990. 
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Assertions 1 and 2 are typical of statistical properties of random elements of F:m>, i.e., occupancy 
problems. Assertion 1 is typical of a whole range of problems that present themselves when analyzing 
the expected performance of hashing algorithms [22]. Assertion 2 is the classical “birthday paradox” 
and it owes its celebrity to the rather counterintuitive low value of 23. Assertion 3 constitutes the 
classical “coupon collector problem”. It is slightly more complicated than the earlier ones, since now 
m is itself a random variable in the  process. However, if we look at the probability that  a iixed 
number m of bars suffice for a full collection, it reduces to  a standard statistical problem over F:m’. 

Assertion 4 brings us closer to  the subject of this paper, since it deals with the iteration structure 
of a finite set into itself. It is an assertion concerning 3:m> with m = n = 2‘. What it says in 
essence is that a random mapping f E F,, will tend to  “cycle” after about f i  steps. As is quite 
well known, this fact, combined with an idea of Floyd for testing random number generators, gave 
rise to  Pollard’s rho-method [33] for integer factoring (cf. Assertion 5 ) .  This eventually led t o  the 
factorization of the eighth Fermat number F8 = 2** + 1, see [3]. 

The last assertion, number 6, is related t o  random permutations which form a special subset of 
F,. 

The model of random functions -where every function from 3:m> or 3,, is taken e q u d y  likely- 
may be either “exact” (# 1,2,3,6) or “heuristic” in which case (# 4,s) we postulate, on the basis of 
simulations, that properties of a special class of functions (e.g. quadratic function models) should be 
asymptotically the same as properties of the class of alI functions’. 

Our purpose here is to  describe a unified framework for analyzing a number of statistical2 prop- 
erties of random mappings. A probabilistic problem to be analyzed is first specified symbolically 
in terms of a collection of suitable combinatorid constructions. If this specification succeeds, then 
combinatorial theory guarantees that  generating functions for parameters of interest can be found. 
We then recover asymptotic information from these generating functions using compIex analysis, and 
more precisely, using the  local behaviour of generating functions around their singularities. 

This approach is effective in analyzing a large number of “decomposable” parameters of random 
mappings. With it, we are able t o  derive in a uniform manner a number of results otherwise obtained 
by a variety of probabilistic or combinatorial arguments. We also demonstrate the effectiveness of 
our approach by solving an open problem of Knuth [23], namely that of estimating the expected 
diameter of random mappings. 

Note. We refer to Knuth’s book 1231 for background information on random number generators. 
R a d o m  mappings are the subject of a vast collection of works; Mutafeiev’s survey [26] cites 113 
references! For general presentations, we direct the reader to the classic paper of Harris [19], the 
papers by Arney arid Bender [l], and Stepanov [44]. In this area, the contribution of the “Russian 
school’’ which uses essentially probabilistic methods, as shown by Kolchin’s book Random Mappings 
[24], is notable. 

For completeness, we mention several recent papers not referenced in [24], namely [4, 7, 11, 20, 
21, 30, 321. In addition, there is now a growing literature on random mapping patterns, and we refer 
to  [27] for a comprehensive list of references on this subject. 

This paper is an (extended!) abstract. In particular, statements of Section 4 regarding extremd 
statistics should be taken as preliminary announcements of results: Several of the proofs there 
(Theorems 7,s) are extremely delicate and, at the time of this writing, have not appeared in full 
detail. The reader interested in quantitative estimates on random mappings rather than methodology 
can proceed directly t o  the self contained statements of Theorems 2-8. 

IIn the cme of Pollard’s algorithms and iteration of quadratic functions modulo integers, a notable advance 
is due to Bach [Z] who proved recently that-in initial stages- quadratic functions behave asymptotically 
like random functions. Bach’s result ultimately relies on the Wed-Deligne theorem establishing the truth of 
the “Riemann hypothesis” for zeta functions of algebraic curves! 

‘The term “statistics” is to be understood in the sense of discrete probability, 
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Figure 1. The functional graph associated to the map p(z) = z2 + 2 (mod 20). The functional graph 
comprises two connected components each containing a cycle of length 2. The function z2 -+ 2 (mod n) 
is one of a restricted set of polynomial functions whose iteration structure can be precisely described. For 
generd p ~ l y n o m i d ~ ,  essentially, the only known approach is heuristic where one postulates that a polynomial 
behaves like a random mapping. (See however [2] for one of the very few rigorous results in this domain.) 

2 Methods 
Any element of 3<m’ can be viewed as a word over an m-ary alphabet of length m.  Thus, there are 
mn mappings from an n-set into aa m-set. Specializing this observation, we find that  the cardinality 
of 3,, 3 .F?’ is nn. We are going to  rederive this trivial result by means of generating functions. If 
{fn},,>_o is a sequence of numbers, then its (exponential) generating function ( G F )  is defined to be 

Proceeding in such a simple case as the enumeration of F, via generating functions may seem a 
complicated detour. However, it has the advantage of illustrating, without unnecessary complications, 
a complete chain in the approach we propose t o  follow for appreciably harder problems. In this way, 
we shall be able t o  give a unified presentation of a number of problems otherwise treated by a variety 
of ad hoc methods. 

AS is well known, there are two components in the use of generating functions. 

A. First, it is classical that  a number of combinatorial constructions translate directly into gener- 
ating function equations. Thus, by properly specifying a counting problem by means of these 
constructions, we are able t o  derive mechanically a collection of generating function equations 
that -in principle, at leas- solve our problem exactly. 

B. Second, the singulan’ties of generating functions (now treated as analytic objects) condense most 
of the asymptotic information needed to recover their coefficients. 

We refer to  [18, 431 for background knowledge related to  combinatorial analysis (Part A). General 
references for asymptotic methods can be found in [6, 291 and our approach follows closely our paper 

Our treatment of random mappings is based not on the direct representation of mappings by 
sequences of choices but  instead on their decomposition as functional graphs. 

Let 9 be an element of 3,. Consider the directed graph whose nodes are the elements [l..n] and 
whose edges are the ordered pairs (z,p(z)), for all z E [1..n]. If we start from any uo and keep 
iterating ‘p, i.e., we consider the sequence u1 = y(uo),uz = y(u1) .  . ., we are going to find, before n 
iterations, a value uj equal t o  one of uo, ul,. . . , T L ~ - ~ .  In graphical terms, starting from any UO, the 
iteration structure of p is described by a simple path that connects to a cycle. The length of the 
path (measured by the number of edges) is called the tail length of uo and is denoted by X ( u 0 ) .  The 
length of the cycle (measured by the number of edges or nodes) is called the cycle length of uo and 
is denoted by p(u0) .  We also call rho-length of uo the quantity p(uo) = X(uo) + p ( u 0 )  which is the 
length of the non repeating trajectory of the point uo. 

1131. 
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If we now consider all possible starting points uo, paths exhibit confluence and form into trees; 
these trees, grafted on cycles, form components; finally, a collection of (connected) components forms 
a functional graph (see Fig. 1). 

2.1 Combinatorid Enumerations 
Looking at Figure 1, a computer scientist could be tempted to give a description of functional graphs 
of the following form 

type FunCraph = set(Component) ; 
Component = cycle(Tree1; 
Tree = Node * set(Tree1; 
Node = Latom(1). %Comment: atom of size 1 (labelled) 

In other words a functional graph is a set of connected components; a component is a cycle of trees; 
a tree is recursively defined by  appending a node to a set of trees; a node is a basic atomic object 
(of size l), and labelled by an integer. 

Let us adopt here the convention that if C is a class of combinatorid structures, then C, (or ~ n )  
denotes the number of elements in the class which have size n -i.e., n nodes. As seen already, we 
let 

Zn 
C ( Z )  = c c,- 

n>O n! 

denote the corresponding (exponential) generating function. Thus, we use the same letters or groups 
of letters t o  denote structures (C), counting sequences (Cn or c,) and generating functions (C(Z) or 

Recent formalization of the  process of combinatorid counting (see e.g., [18]) offers the  possibility 
of translating directly specifications of the type above into generating function equations. Here, they 
provide for the collection of equations: 

4%)). 

FunGraphjz) = exp( Component(2)); 
Component = log(1- Tree(z))-'; 

Ree(z) = Node(z )  x exp(Tree(r)); 
Node(z)  = z .  

Comparison between the formal specification and the collection of equations reveals that we have 
used the translation mechanism 

set H exp(.) 
cycle H Iog(1 - ( . ) ) - I  

* H x (ordinary product) (3)  

This mechanism (3) is quite powerful and of course completely general [17]. We will not attempt 
here to redo the whole theory that  underlies such derivations. Let us just indicate that if F, G and 
7-t are three classes of labelled structures related by 3 = D * 3.1, then the corresponding counting 
sequences satisfy 

fn = k=O 2 ( ; ) g L .  

In the equation above, index k selects the size of the G component (there are gk possibilities for this 
component and hn-k possibilities for the 3.t component), and the binomid coefficient represents the 
number of ways of distributing labels [l..n] between the the two components. At the G F  level, this 
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relation on coefficients gives f (r)  = g(z). h ( r ) .  The rule for sets, for instance, follows from ska&' 
interpreting the expansion 

as meaning that a set over D has either 0 or 1 or 2 or 3, etc. elements. 

t ( z ) ,  we obtain a more readable form of our basic set of equations (3): 
If we abbreviate our generating functions for FunCraph, Component and Tree by f (z ) ,  C ( Z )  and 

f(2) = e44 

c(2)  = log- 
1 - t ( z )  

t ( z )  = ze*(') 

1 
(4) 

which expresses generating functions of interest in terms of the implicitly defined tree function t ( 2 ) .  

We briefly digress here to indicate how exact counting results are hidden behind such equations. Function 
t ( z )  was considered by Eisenstein and Cayley (amongst others). The Lagrange inversion theorem furnishes 
the number of trees of size n in the form t ,  = nn-' (Cayley's theorem); the same theorem gives the explidt 
expansion of f(z) = (1 - t ( z ) ) - ' ,  and one gets as expected fn = n". 

2.2 Asymptotic Analysis 

Probabilistic problems on random mappings are usually more complicated than the plain enumeration 
results that we have just discussed. Fortunately fairly synthetic methods exist that also permit one 
to extract directly the  asymptotic form of coefficients of a complicated generating function from its 
singularities. 

These methods take their roots in the work of Darboux in the last century [29] and we shall make 
use here of the approach called singularity analysis which originates in [28] and [12], and which is 
exposed by us in [13]. 

If we first observe the asymptotic form of coefficients3 of standard functions 

[ 2 " ] L  = 3", 
1 - 3 t  

1 

1 - 4 2  
[PI- = 4", 

1 4" - F' 

( 5 )  

we notice from (5 ,6 )  tha t  the location of a singularity of the function (at f or a) determines the 
dominant exponential behaviour of its coefficients (as 3" or P). Comparison of (6) and (7) reveals 
further that a singularity of a square-root type yields a subexponential factor also of a square root 
type, namely l / f i .  

Our previous observations were based on functions with Taylor coefficients of a simple expfiut 
form. What is of interest in our context, is that it is sufficient to determine local asymptotic expan- 
sions near a singularity, and such expansions can be "transferred" to coefficients in the same way as 
before. This is the heart of the method called singularity analysis in [13]. The precise formulation 
of one of the results of that  paper that we shall need is as follows: 

Theorem 1 (Singularity Analysis) Let f ( z )  be a function analytic in a domain 

3We let a4 usual [znj f ( z )  denote the coefficient of Z" in the expansion of f ( z )  
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Figure 2. Two conformal representations by 

f (z )  = (1 - 2)"' and g ( z )  = (1 - z)~/' 

of the unit square Q = {z = z + i y  I - 1 5 I 5 +l, -1 5 y 5 fl}. The two different types of singular 
behaviours at z = 1 (left "angles" on the diagrams) are  reflected by different growths of coefficients, n m d y  

fn [."I f (2 )  z n-l-lI2 = n-3/2 and gn [z"] g(2) n-1-915 - - n-l4I5, 

where s, s1 > s ,  and 7 are three positive real numbers. Assume that, with u(u) = ua lo$ u and 
a $! (0, -1, -2, .  . .}, we haae 

a s z - + s i n V .  

Then, the Taylor coeficients of f (2) satisfy 

4.) [z"] f(z) - S-"- 
nr(a)'  

For instance, using Theorem 1, we find: 

To obtain the first relation (a), observe that the only singularity of h ( t )  = e " / d m  is at z = i, 
and there h ( z )  - e1 '4 /dm,  the  asymptotic form of the coefficients being then given by (7). The 
second relation (9) illustrates the variety of singular behaviours that can be treated by singularity 
analysis, and here a 6 on the function transfers into a 6 on the coefficients. 

Random Mappings. Let us apply this technology to  functions involved in the analysis of random 
mappings. We are then required t o  determine the singularities of the function t ( z )  which determines 
all other functions in (4). We have seen that 

Proposition 1 The tree junction t ( z )  defined by (10) is analytic in the domain V formed by the 
complex plane slit along (e- ' ,  +w). For z tending to e-l in V, t ( r )  admits the singular eqans ion ,  
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Proof. In fact, implicitly defbed functions normally have square root type singularities. Equation (10) is 
a particular case of the general scheme 

which determines y(z) as a function of y. It is known -by the implicit function theore- that, if we have 
a solution (zo,yo) of (12), then we can "continue" it in a neighbourhood of (z0,yo) provided that 

F ( z , d z ) )  = 0, (12) 

In other words, if F(zo,yo)  = 0 and Fy(z0,yo) # 0, then a branch of y(z) satisfies y(z0) = yo, and that 
branch is regular at PO. Observe also that locally, the dependency between P and y is expressed by 

(2 - zo)F*(zo,yo) + (Y - ~O)-Fy(ZO,YO) N 0 (14) 

corresponding, as expected, to a locally linear dependence between z and y. 
In contrast, if condition (13) ceases to be valid, then the dependence between t and y assumes the form 

(15) 
1 
2 

(2  - zo)F,(zo,y~) + -(y - yo)*FYy(z~,yo) +smaller order terms = 0. 

Solving (15) for y,  we thus 6nd between I and y a squareroot dependency: 

The brief discussion above shows the paradigm of a singularity analysis of implicitly defined functions 
[lo, Chap V]. The fundamental ideas, in the realm of asymptotic counting, seem to go back to P6lya, and 
Meir and Moon derived in this way a number of statistical properties of random trees (see e.g., [25]). 

In the case of the tree function t ( z ) ,  we can apply our previous discussion with F ( z ,  y) = y - rey. The 
singularities of t(t) are thus amongst numbers zo which satisfy the system of two equations in two unknowns, 

yo - zOeYo = 0 and 1 - zOeYo = 0 

which provides yo = 1 and 20 = e-l. The singularity of t ( z )  that we need to consider is thus x = e-'; 
around this point, the singular expansion (11) is easily derived from the model (15J6). I 

We can now apply singularity analysis to  t ( z )  and the functions that depend on it. By Theorem 1, 
considering functions t ( r ) ,  1/(1 - t (z)) ,  etc., we find 

tn en 
= [ Z " ] t ( Z )  N - 

n! rn - 

c, e" 
n! 272 
- = [ z " ] c ( z )  - - (17) 

The result concerning f, is expected, and by a complicated detour, we have rediscovered Stirling's 
formula! In view of Cayley's result that t ,  = n*-l, the first line is also equivalent t o  S t i rhg ' s  
formula. However, the asymptotic form of c, already represents a non obvious asymptotic result. 

We shall see in the  next section that, once this basis has been established, many asymptotic 
estimates follow very easily. 

3 Additive Parameters 
We now follow the approach of Section 2, in order to  derive expected values of several parameters of 
interest in the study of random mappings: First, set up generating function equations; second, analyze 
locally the singularities of these generating functions. We consider here additive parameters whose 
values can be determined by simple (essentially additive) rules from the structural decomposition of 
random mappings into functional graphs. It proves convenient to subdivide additive parameters into 
two classes: 
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direct parameters (e.g., the number of connected components) represent the number of certain 
distinguished configurations in mappings; 

cumdative parameters (e.g., expected distance to cycle, A) represent characteristics of mappings 
seen from a random point. 

Note. Estimates given in this section are essentially classical. The iirst results on random mappings 
appear to  have been found in the 1950's by a variety of methods including exact enumerations, 
discrete probability or generating functions. The paper by Harris [19] provides a first extensive 
approach to problems discussed in this section. Further results are given by Stepanov I441 or k n e y  
and Bender [l], and our presentation follows similar lines. 

3.1 Direct Parameters 

Let ([p] be a parameter of functional graph (or equivalently, mapping) p, such as the number of 
connected components. We introduce the quantities 

called respectively the total value (over 3,) and the (exponential) generating function associated to 
parameter (. Observe that,  with 3 = U n 3 , ,  the generating function S ( Z )  has the alternative form 

and the expected value of E taken over 3,, is nothing but 

En n! E{( 1 7,) = - = - [z"] E ( L )  
nn nn 

Thus, once S(z)  is known, the expectation analysis of [ becomes similar to counting problems 
encountered earlier. 

Theorem 2 (Direct Parameters) T h e  expectations of parameters number of components, number 
of cyclic points, number of terminal points, number of image points, and number of k - t h  iterate image 
points' in a random mapping of size n have the asymptotic forms, as n -+ 03, 

(i) # Components f log n 

(ii) # Cyclic nodes 

(iiz) # Terminal nodes e-'n 

(is) # Image points (1 - e - ' ) n  

( u )  # k- th  iterate image points ( 1  - Tk) n, 

where the ?-k satisfy the recurrence T~ = 0, T ~ + ~  = e-'++' 

'In the sequel, we use the term "point" as synonym for "node". Parameter number of components refers 
to the number of connected components; a point is cyck'c if it belongs to a cycle; z is termioal if it has no 
preimage (cp(-')(z) = 0), and it  is an image point otherwise. A k-th iterate image point of cp is an image 
point of the k-th iterate p(') of 9. Clearly, (iai) and (2.) are  equivalent results, and (iv) is a particular case 
of ( w ) .  
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Proof. The algebra of generating functions. Introduce temporarily bivaxiate generating functions 
which for a given parameter [ are defined as 

We can View variable tc ar ‘‘markin$‘ parameter 4. The generating function associated t o  (mean 
value of) 5 is nothing but 

a 
8U 

Z(z) = +(u, z)i 
u=l 

We shaIl Uustrate the method of proof in cases (i), (ii) and (iii). For the number of components 
and number of cyclic points, we find respectively as values of [(a,  z ) :  

For the number of terminal nodes (points without preimages), we have instead a two level scheme, 

where t (u,  z )  is the G F  for trees with ZL marking leaves. 

only an auxiliary variable u which “marks” configurations of interest. 

d u e s  the forms 

Eqs. (23,24) derive from a simple extension of the translation schemes of Section 2.1, introducing 

Applying principle (22) to bivariate GF’S (23,24), we find for the corresponding GF’S of total 

Z,(Z) 
Z - - 

(1 - t ( Z ) ) 3 ’  

The Andysis of Generating Functions. All G F ’ S  above are expressible in terms of the tree function 
t ( t ) .  Singularity analysis as z -+ e-l is now immediate from the discussion of Section 2.2. Consider 
for instance case ( i )  dealing with the number of components. From Eq. (ll), we find directly for 

(z) the singular expansion 

Analytic continuation beyond the circle of convergence is guaranteed by continuation properties of 
t(z) (cf. Section 2.2). Thus, we are justified in applying the singulxity analysis theorem, and we get 

from which part (i) of the theorem follows after normalization by n!/n”. 
Finally case ( i v )  i s  a direct variant of case (iii). Case ( u )  follows simply by adapting the argument 

used for counting terminal nodes, with the help of the GF’S  of trees of bounded height which we disc- 
in Section 4. II 
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3.2 Cumulative Parameters 

We now turn to  the study of random mappings in 3,, as seen from a random point (any of the n 
nodes in the associated functional graph is taken equally likely). Let now [[p, v] be a parameter of 
point u in mapping p E 3. An example of such a parameter is the distance of point I/ t o  its cycle in 
p. We introduce the quantities 

called again total value of E and generating function associated with C. The expected value of 6 is 
now to be taken over the set [l..n] x Fn (which has cardinality nn+I) and is 

Theorem 3 (Cumula t ive  Parameter Estimates) Seen from a random point in a random map- 
ping of 3,,, the ezpectations of parameter2 tail length, cycle length, rho-length, tree size, component 
sire, and predecessors size have the following asymptotic forrns: 

(i) Tail length (A)  + 4 g  

(iv) Tree size 4 3  

(ii) Cycle length (p) 
(iii) Rho length ( p  = X + p )  @ 

(v) Component size 2nf3. 
(vi) Predecessors size J.irn/8. 

Proof. We shall just give the main steps in the proof in the case of the cycle length parameter (ai). 
The algebra of generating functions. The bivariate G F  

1 
log - 

1 - at (z )  
is a G F  of connected components, where variable u marks the number of cyclic elements. If we 
consider 

then we have a generating function for weighted single-component mappings where a component of 
size n with k cyclic points has weight n - k. 

The expression in (30) is equal to zt ' / (  1-t)'. We then cumulate these weights over all components 
of random mappings; we can prove generally that this operation corresponds to multiplication of the 
single-component generating function by 1/(1 - t ) .  Thus, the G F  associated to cycle length is 

The analysis o f  generating functions. From our basic expansion (Proposition 1 and (11)) of t ( z )  
around the singularity z = e-l, we find that t ' (z)  ,-- 2-'/*e(l - ez) .  1/2. Thus, we have 

and the result for cycle length follows from Theorem 1. 
Analogous methods can be employed to cope with the other five cases. H 

6Tail length, cycle length and rho-length are defined at the beginning of Section 2. The tree size parameter 
of node Y means the size of the maximal tree (rooted on a cycle) containing u; component size means the 
size of the connected component that contains u. The predecessors size of v is the size of the tree rooted at 
w or equivalently the number of iterated preimages of u. 



339 

3.3 Probability Distributions 
Though this is not our main purpose here, it is also of interest to consider various characteristics 
of probability distributions of random mapping parameters. Variance and higher moments can be 
determined by the same methods as have been employed earlier in this section, though often at a 
higher computational cost. 

Exact probability distributions in random mappings usually have (asymptotic) limit forms, a 
number of them, like in the case of simpler parameters of Section 3.1 being either Gaussian (with 
density e-2'/2) or Rayleigh (with density ze-22/2)  in the limit. Let us examine for instance the pa- 
rameter number of components from Section 3.1; asymptotic normality was &-st derived by Stepanov 
[MI. First, the variance estimate is easily derived by differentiation of the function &(u,z)  given 
in (23) and we find that the standard deviation is N $logn. In [16], the authors derive Stepanov's 
result as a particular case of a general law for coefficients of bivariate generating functions of the 
form euf('): The idea, which is applicable to several other parameters, is to extract the coefficient 
of tn in the bivariate GF using singularity analysis, and taking u complex in the vicinity of 1, we 
estimate in this way the characteristic function of the discrete distribution of interest. 

The methods we have already introduced can also be used to derive refined counting results like 
the number of cycles of size r (for a fixed integer T )  in a random mapping. 

Theorem 4 (r-configurations) For any fized integer r ,  the parameters6 number of r-nodes, num- 
ber of predecessor trees of  size r ,  number of cycle trees of size r and number of components of size r ,  
have the following asymptotic mean values: 

(i) r-nodes: ne-l / r !  
(ii) r-predecessor trees: nt,e-'/r! 
(iii) r-cycle trees: . t7e+/T! 
(iv) r-cycles: 11' 
(v) r -components: c,e-'/r!, 

where t ,  as the number of trees having r nodes, t ,  = T ~ - ' ,  and c, = r![z']c(z) i s  the number of 
connected mappings of sire r .  

Proof. Generating functions result from the marking techniques of Section 3.1. For instance, the 
G F  of functional graphs with u marking r-cycles (case ( iv))  is 

1 
f ( u ,  z )  = exp 

Computation of the coefficients of 

by singularity analysis yields the result. i 
We thus see that node degrees in a random mapping are approximately Poisson distributed with 

parameter 1, a result consistent with our earlier estimate of the number of terminal nodes. The 
expected number of r-cycles decreases as 1 / r ,  a property similar to that of random permutations: 
For instance, a random mapping has on the average 1 fixed point. (Notice however that the implied 
error terms are not uniform; a random permutation has an average of logn  cycles, while a random 
mapping has only logn.) Contour integration techniques will usually provide useful estimates when 
one needs to let r vary as a function of n. 

I 

'An r-node is a node of indegree r; a cycle tree is a tree rooted on a cycle; a predecessor tree is an 
arbitrary tree in the functional graph. 
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4 Extremal Statistics 
The purpose of this section is to examine extremal statistics on random mappings. We consider 
questions which, in the perspective of random number generators are like: "Are there good seed 
values that lead to long periods?". In particular for 6 one of the parameters discussed in Section 3.2 
-A, p, p = X + p, tree size or component size- we consider Im"'defined by 

€""[cpl = yg"(P, 4 (31) 

The generating function approach works fairly well for these parameters. As in Section 3.1, we 
introduce the generating function associated with an extremal parameter Em", 

Thus n!n-" [z"] Z(z) represents the expectation E{(maxlFn}. 

f f k 1 ( t )  is a "subseries" of the generating function of all functional graphs defined by 
The approach to the determination of 2 goes through a class of generating functions fIkl(z) where 

(33) 

By a classical formula7, 2 is expressed in terms of the flk1 by 

However, the analytic treatment of the f lk l  and of the associated sum in (34) becomes appreciably 
more difficult than in our earlier examples. Corresponding generating functions lead to two sorts of 
analytic problems: 

Tkuncated series. We need to find uniform estimates for truncated Taylor series near their dominant 
singularity [p, tree size, component size]. 

Singular iteration. We need to estimate uniformly the convergence of iteration schemes near a 
singularity of the fixed point [A and p]. 

We distinguish two categories of parameters, longest paths (A, p, p )  and largest components (trees 
and connected components). 

4.1 Longest Paths 
The case of the longest cycle in a random functional graph wi l l  serve to introduce the subject. The 
expectation was first determined by Purdom and Williams [35]. These authors use a result of Shepp 
and Lloyd [41] which is based on deep Tauberian methods and which describes the distribution of 
the longest cycle in a random permutation. Our derivation proceeds instead directly from generating 
functions using singularity analysis. 

'The argument is a generating function version of the following well known formula for the mean value 
of a discrete random variable X: 

E{X} = kPr{X = k} = Pr{X 2 k} = x[l- Pr{X 5 k}]. 
k z  1 k>l k>O 
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Theorem 5 The ezpectation of the maximum cycle length in a random mapping of F,, satisfies 

where c1 =: 0.78248 is  given by 

c1 = F/" [l - e-E1(u)] dv, 
2 0  

and El(v) denotes the ezponential integral 

Proof. (Sketch) Generating functions in this problem involve the truncated IogaritAm, 

Let f [ ' ] ( z )  denote the G F  of functional graphs, all of whose cycles have length at most k. Then, we 
have 

f ' " ( Z )  = UP ( e k ( t ( z ) ) ) ,  (36) 
with t ( z )  again the tree function. 

G F  is readily determined from (36 ) :  
Introduce the generating function Z(z) associated to parameter pmsx in the sense of (32). This 

where rk(U) is the complement of the truncated logarithm, 

The problem rests now on the determination of the asymptotic behaviour of Z(z) as t e-l. 
Set t ( z )  = e-". By conformal mapping properties of t ( z )  related to its square-root singularity, when 
z lies in a suitable indented domain that includes the disk IzI < e-l (a 2) domain in the sense of 
Theorem l), we have It(z)I < 1 so that z lies in the half plane R(z) > 0. 

The main steps for the estimation of 3 ( z )  are: 

m du 
N /" [I - exp(- e-' --)I du. 

(1 - t ( z ) ) *  0 

Once Eq. (40) is established, the theorem follows immediately by singularity analysis. NOW the 
transition from (38) to  (39) results from approximating a sum by an integral, i.e. by Euler-Madaurin 
summation. (It is important that we should have convergence of the integral, but this is granted 
since R(z) > 0, which also allows us to change the upper limit of integration from zoo to  +m using 
Cauchy's theorem.) The transition from (39) to (40) follows similarly by Eder summation, noting 
that the step z in the discrete sum (39) is - 1 - t ( z )  as z + e-l. The only details that are omitted 
from this proof are the derivation of uniform error bounds. 
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In passing, observe that  the same method permits one to estimate the expected length of the 
longest cycle in a random permutation, thereby avoiding the delicate Tauberian arguments of [41]. 
Related distribution results are discussed by Stepanov in [44]. 

The next theorem concerns the expected value of A"". Results concerning distribution estimates 
were first derived by Sachkov 1391 and Proskurin [34] using multivariate probabilistic methods. The 
derivation that follows brings a "singular iteration problem" and the corresponding methods are 
also useful for pmu estimates. 

Theorem 6 The  ezpectation of the maximum tail length [Amax) in a random mapping of F,, satisfies 

E{Xrnaxl-C} - CZG, 
where c2 1.73746 i s  given b y  

c2 = &log2. 

Proof. (Sketch) Let tLhi(z) denote the G F  of trees with height at most h. (Height is measured by 
the number of edges along a longest branch, so that a one node tree has height 0.) These generating 
functions are given by the recurrence 

t"l((t) = 2, tlh+'l(z) = zexp(t'h'(z)). (41) 

We note that, as h -+ 03, we have t[hl(t) -+ t ( z ) ,  at  least in the sense of convergence in the ring 
of formal power series. The  GF for mappings with A"" 5 h follows again from the techniques of 
Section 2, and it is 

The G F  associated t o  €,mu = A"" is then found by Eq. (34) to be 

- 1 1 
+) = c [--- - 1. 

h20 1 - t ( z )  1 - tl"(z) 
(43) 

The analytic problem now lies with determining the nature of the approximation of t ( z )  by the 
dhl(z) when z is in the vicinity of e-'. This is a singular iteration problem. For instance, for z 
real, 0 < z < e-', the  convergence is geometric. On the opposite, for z > e-I, we have a case 
of strong hyperexponential divergence. At exactly z = e-l, convergence is extremely slow being of 
order l /h.  In other terms, we approximate a function, t ( z )  with an algebraic singularity (branch 
point), by a collection of entire functions t["I(t), and we need to find uniform estimates in z and h 
in a neighbourhood of the singularity of the limit'. 

Approximations similar to  those needed for the proof of Theorem 6 are provided by us in [12], 
where we analyze the expected height of random trees of various sorts in this manner (see also [38] 
for closely related results). Imitating the method of proof of 1121, we define 

E = E ( Z )  = 2 1 ' 2 v ' G  and eh( z )  = t i t )  - t'"l(z). 

We also introduce the "dented" domain 

D = {t  1 121 5 e-', /Arg(e-' - z ) /  5 7i/2 + 6) (44) 

for some 6 > 0. The first step, whose rather involved proof we omit, is to show that  in the  region 

{ z  I /zI I e-' + 6 ,  t $ D} 

81t turns out that the tih+) converge to t ( z )  for all t in { z  1 I = Ce-C, 5 1). This follows from recent 
results in iteration of entire functions due to Devaney 19, 81; however, these results do not seem to provide 
the necessary quantitative information we need. 
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we have eh( z )  small and &‘“(z) bounded away from 1, so that z ( z j  is analytic there. Therefore, in 
order to  apply Theorem 1, we only need to  study a(z) for z E D. 

The main step in the proof of the theorem is t o  establish that for z E D, the e h ( z )  are approxi- 
mated by an explicit function of h and E ,  

(1 - € ) h  

1 - (1 - € ) h  
e h ( z )  = 2E (45) 

This approximation shows both the slow convergence of tIhl(e--l) to t (e- ‘ )  (in fact, it shows that 
eh(e-‘) N 2/h),  and the geometric convergence for E f 0. The proof o i a  precise form of (45) proceeds 
along lines similar to  those of [12], although there are some additional technical complications. 

* ?  
We define 

I 1  
W(.) = I - - - - 

1 -e-2 J 2’ 

so that ~ ( z )  is analytic in / z /  < 2 ~ .  The  basic recurrence for the t[’:\,-) shows that 

and therefore, by normalizing and the trick of “taking  inverse^"^, 

from which it follows that  

Equation (49) is the basic tool used t o  estimate e h ( z ) ,  with the iirst term in (49) corresponding 
to approximation (45). Another argument shows that if the 6 in the definition (44) of D is taken t o  
be small enough, then leh(z)l < 5, say for all h 2 0 and all z E D. This means that the expansion 
(49) holds for all z E D, without singularities arising from the w function. Sharp bounds for the 
error in the approximation (45) for e h ( z )  are obtained by iterated use of (49): First the crude bound 
for e j ( z ) ,  when inserted into (49), gives a more refined estimate arhich is then used t o  obtain an 
improved estimate for the sum on the right hand side of (49), yielding the final approximation result. 

As an illustration, we develop the case where z = e-’. The reduced form of (49), with t (e - ’ )  = 1 
and eh = eh(e- l )  reads 

We start “bootstrapping” with the information that 0 < eh < 1. Eq. (50) provides 

which guarantees that 1/eh is upper and !ower bounded by terms that are of order h. Thus eh = O( i ) .  
Reinserting this information inside ( 5 0 ) )  and using the fact that w ( z )  = 2/12 + 0(z3) for small 2, 
we get the improved estimate 

’This technique amounts to comparing a non linear slowly converging iteration to  a homographic recur- 
rence, %+I = (a%, + b ) / ( m ,  td). h good illustration is de Bruijn’s trearrnent of the iterates of the function 
sin(r) in [6 ,  Ch. 81. 
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so that eh N 2/h. Continuing in this fashion, we obtain 

and an expansion to an arbitrary order can be generated in this way. 
Returning now to Z(z), we have 

- 1 e h ( z )  
- E x .  

- t ( Z ) ) z  h>O 1 + 1-qZ) 

Setting, like in the preceding theorem, t ( z )  = e-' N 1 - c, the computation develops as follows: 

A crucial step there consists of justifying the use of the approximation (45) inside the exact form 
(51) resulting in Eq. (52) or its equivalent form (53). Once (52) and (53) are established, (54) follows 
by Euler-Maclaurin summation. The final result (55), when subjected to singularity analysis yields 
the statement of the theorem. I 

The last result in this subsection concerns the parameter pm" also called sometimes, in accordance 
with graph theoretic terminology, the diameter. It provides an answer to an open problem of Knuth 
([23], Ex. 3.1.14, p. 519). As could be expected from the nature of the parameter p"", the proof 
combines the tools developed for Theorems 5 (p"") and 6 (Am*), and in particular it strongly relies 
on the estimates of dh1(z) and eh(z) .  

Theorem 7 The ezpectation of the maximum rho length (p"") in a random mapping of & satisfies 

where c3 x 2.4149 is given by 

with &(v) denoting the exponential integral and 

Results from the previous sections indicate that, in a random mapping, most of the points tend to 
be grouped together in a single giant component. This component might therefore be expected to  
have very tall trees and a large cycle. Thus, the inequality 

~3 = 2.4149 ... < CI + cz = 2.5199 ... 

is rather interesting as  it says that, with non zero asymptotic probability, the tallest tree in a 
functional graph is not rooted on the longest cycle. 
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Proof. (Sketch) Due t o  the  intrinsically technical proof, we shall content ourselves here with a brief 
description of the major points of the analysis. 

The generating function of functional graphs with rho-length at most k is, in accordance with 

(56)  
1 1 
2 k 

(3% 
f [ k l ( ~ )  = e V b ( ' )  where uk(z) = t['-'](z) + -(t1k-'l(z))2 +. .. + - ( t [o l ( z ) )k ,  

with zlo(z) = 0. This form is easily justified, since in order to build a connected component with 
rho-length 5 k, we either graft a tree of height 5 k - 1 on a 1 node cycle, or two trees of height a t  
most k - 2 on a 2 node cycle etc. Thus the G F  of pmu is 

Let now Eo(z) be the GF associated with the longest cycle parameter defined in (37). Several routes 
are conceivable. A convenient one starts by considering the difference 

A(%) = n ( Z )  - ~ ~ ( 2 )  = C [ e ' h ( t ( z ) )  - e o b ( r ) ]  

k t O  

which is associated to  pmu - pmu. Factoring out the quantity e L k ( t ( L ) )  in the general term, we find: 

where the w's are given by 

Taken together, the last form in (58) and Eq. (57) summarize the algebraic forms of generating 
functions needed for asymptotic analysis. 

From this exact form, the analysis proceeds, setting again t ( r )  = e-', so that I N 2 ' ' ' G .  
We use the z symbol t o  emphasize the fact that error terms are not made explicit (arid may be 
dominant in some eventually unessential regions). 

First it can be proved that  the dominant terms in the sum ( 5 7 )  of A(z) are for those values of k 
such that kz = @(I). 

A crucial step is to  approximate wk(%).  We have from (58) 

where, by the general approximation of (45), 
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We now appeal to  a continuous model for these sums based on Euler-Maclaurin summation. 
Setting kz = v, kc = u, we derive for W k ( z )  the approximation 

Injecting this form inside the main formula (57) for A(z) leads us to 

which yields to  a final assault of Euler Maclaurin: 

There are of course considerable technical difficulties in actually organizing the proper approx- 
imations with their error terms. The form (61) combined with the information gathered in (40) 
regarding the G F  of pmax shows that  

At this stage, the result falls as a ripe fruit by singularity analysis. m 

4.2 Largest Configurations 
We consider here the analysis of the largest tree and of the largest component in a random mapping. 
The analysis given here will be only partial since we shall appeal to a smoothness hypothesis (which 
is intuitively clear, but harder t o  establish rigorously). 

Generating function equations here involve series truncation operators that we have &eady used 
implicitly when dealing with longest cycle. Let u(z )  = En &zn be a power series. We introduce two 
operators called truncation T, and remainder R,,, that are defined by 

Tm[a(r)] = C antn, R,[a(z)] = C anzn. (63) 
n j m  n>m 

Let (-= be one of the parameters of random mappings, largest tree size or largest component 
size. We shall say that  the parameter is smooth if the following condition is satisfied: 

There exists 6 such that 6 = ,llm :E{(""lFx}. (64) 

If b exits, then by standard Abelian theorems [45, Chap. 71, Ejz)  satisfies Z(z) N 61(1- e ~ ) - ~ ' *  when 
z tends to e-l along the r e d  axis z < e-l, for some 61 directly related to  6 (actually 6: = 2 f i 5 ) .  
Thus if we find that ,  limited to  the real line inside its circle of convergence, Z(z) has the proper 
behaviour, then we a.re able to  deduce the value of 6: 

The smoothness assumption thus dispenses with finding local expansions in a complex neigh- 
bourhood of e-l. T h e  reason why we introduce it here is to  bypass some intrinsic difficulty in the 
singular behaviour of truncated Taylor series. Indeed, Jentzsch's theorem [45, p. 2381 states that, for 
every power series, every point of the circle of convergence is a limit-point of zeros of partid sums. 
For largest components, the generating functions f f k ]  of (33) involve truncated Taylor series and thus 
exhibit a very irregular behaviour on the circle 121 = e-l. The validity of our singular expansions is 
then restricted to the interior of the disk of convergence 121 < e-l. It is probable that  a more refined 
analysis (e.g. using dif€erent integration contours for different terms in the G F  2 ( z ) )  would enable us 
to  dispense with the smoothness condition, but this is presently not obvious. 
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4.6 1 
Figure 3. The star diagram of zeros of the polynomial U32(z), where 

m 
U m ( Z ]  = 1 - c n7L-lc 

n! '  n=l 

This pol~nomial is a "truncation" of 1 - t ( z ) ,  with t ( ~ )  being the tree function, and its zeros appear in the 
analysis of largest tree size. In accordance with Jentzsch's theorem, the zeros tend to accumulate around 
the circle IzI = e-l .  

Theorem 8 Assuming the smoothness condition, the expected value of the size of the largest bedo 
and the size of the largest connected component in a random mapping of F,, are asymptotically 

(i) Largest tree: dl  n 
(ii) Largest component: dan, 

where d l  w 0.48 and d2 =: 0.75782 are given by 

Proof. (Sketch) The  generating functions associated to the two cases under discussion are respec- 
tively 

To approximate them, we set z = e-l--Y. 

'Olnteresting distribution properties of the size of the largest tree are discussed in [24, p. 1641 and [31]. 
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Consider the case of largest tree &). Then, the GF can be rewritten as 

When m is large enough, and y small, using 1 - t ( Z )  

and Euler Maclaurin summation: 
21/2y1/2T we get by Stirling's approximation 

The f ind step consists in transporting appro-uimation (67) inside Eq. (66 ) )  and using a further step 
of Euler-Maclaurin summation. The derivation for maximum component size is similar. I 

5 Extensions 
The methodology discussed here is applicable to  the analysis of a large class of combinatorial struc- 
tures, roughly speaking those that can be specified using the combinatorial constructions of Section 2.  
It is also systematic enough that  some of these analyses can be automated using computer algebra 
systems. 

5.1 Alternative Models 
Harris [19] already discusses mappings without &xed points. In the context of Section 2.1, this 
means that the specification of functional graphs (FunGraph) has to be altered by prohibiting cycles 
of length equal to  1 inside components: 

type FunCraph = set(Component); 
Component = cycle(Tree,card>l); 
Tree = Node*set(Tree); 
Node = L a t o d l ) ;  

It is a simple exercise to derive the modified form of Eqns. (2) in this case: 

FunGmph(z) = exp( Component(z)); 
Component = log(1 - Tree(r))-' - T r e e ( z ) ;  

Tree(z) = Node(z)  . exp( Tree(z)); 
Node(2)  = z, (68) 

and in the equation for Component(z), we have taken out the possibility of an isolated tree on a (size 
1) cycle. In other wordsl the equation for modified functional graphs is 

(69) 

Following Meir and Moon [ZS], b e y  and Bender (11 discuss random mappings with constraints 
on the degrees of nodes. In fact, if we consider the functional graph attached to  a quadratic trans- 
formation $(z) = z2 + c mod n for n prime, we see that, with a single exception I = c,  all nodes 
have degree 0 or 2. This justifies interest in binary functional graphs, where the only (inldegrees of 
nodes allowed iLTe 0 or 2.  In that case, the specification only needs editing: 
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type FunCraph = set(Component) ; 
Component = cycle(Node*BinTree) ; 
BinTree = Node + Node * set(BinTree, card = 2);  
Node = Latom(l), 

The equation determining the GF f,*(z) of these modified mappings becomes thus 

1 1 
with b ( z )  = z + --zb2(z).  fa.) = 1 - j  2 

Solving the quadratic equation for b ( z ) ,  we then find that 
, 

and in particular, there are 2-”(2n)!(:)  binary functional graphs of size 272. Algebraically, the case 
of general degree restrictions can be treated with comparable ease, and the corresponding analytic 
treatment involves the general discussion on singularity analysis of implicitly defined functions given 
in Section 2.2. 

It is then a simple task t o  adjust the approach taken in earlier sections (especially Sect. 3) t o  
such modified models. Analysis reveals that, in this case, though multiplicative constants are quite 
sensitive to  such changes, the basic orders of growth of parameters remain essentially unaffected. An 
example in sharp contrast with this situation is treated in the next section as an illustration of the 
capabilities of an automatic analysis system. 

5.2 Automatic Analysis 
The methodology tha t  we have followed in order to  analyze additive parameters of random mappings 
is general enough, so as to make it amenable to some form of automatization. Together with B. S d v  
and P. Zimmermann, the first author has developed a system named A$ (Lambda-Upsilon-Omega), 
which takes as inputs specifications of combinatorial structures and characteristic parameters, and 
produces (in a number of cases) automatically the expected values of the parameters. T h e  system 
makes extensive use of resources of the computer algebra system M A P L E  [5].  

Such an approach proves useful when analyzing complex models. A description of the  current 
state of the system is given in [lj] and it will only be illustrated by treating a “sensitivity a d y s k ”  
problem due to  Michkle Soria who discusses systematically such phenomena in her thesis [42]. 

The analysis below is produced automatically by the A F  system. The session presents the 
analysis of a variant of the model of random mappings: We modify the classical definition of functional 
graphs by forcing all nodes on cycles to  have indegree 2 exactly. In other words, we consider special 
functional graphs (the Sfungraph type) made of sets of cycles of special planted trees (Stree). The 
problem consists in determining t o  what extent essential parameters are sensitive to such a change 
in the model. Standard functional graphs have on average ilogrz -i- O(1) components (cycles) and 
N 6 nodes on cycles. The small change in the specifications somewhat unexpectedly results in a 
rather drastic change of stochastic properties of these graphs. 

The I@ system accepts as inputs structural descriptions of “decomposable” structures in the style of 
Section 2 and of our earlier formal specifications. Thus, our class of special functional graphs wiU be specified 
quite naturally by: 

type  Sfungraph = set(Scomponent); 
Scornponent = cycle (Stree) ; 
Stree = product(Node,Tree); 
Tree 
Node = Latom(1) ;  

= product (Node. set (Tree) ) ; 

The system is primarily designed to estimate the average case complexity of algorithms. In order to 
analyze parameters like the number of components, we therefore write a procedure whose complexity is 
precisely equal to the parameter to be analyzed. The second part of the input thus reads: 
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procedure number-of-components(f : Sfungraph); 
begin 

forall c in f do 
count ; 

end; 

procedure number-of-cyclic-points (f : Sfungraph) ; 
begin 

forall c in f do 
forall d in c do 

count : 
end; 

measure count:l; 

where the last line specifies that count is a counter with constant complexity equal to 1. 

functions. This task is achieved by the ALGEBRAIC ANALYZER of A$ written in the Caml language [46]. 
Systematic translation mechanisms allow us to compile such specifications into equations over generating 

Counting generating functions: 
Trea(z)rNode(z)*erp(Tree(z)) 
Stree(z)=Node(z)*Tree (z) 
Scomponent(z)=L(Stree(z)) 
Sfungraph(z)=orp(Scomponent(z)) 
Node (z)=z 

Complexity descriptors: 
tau_number_of_components(z)=(exp(Scomponent(z))*l*Scomponent(z))+O 
tau-number-of-cyclic_points(z)=(exp(Scomponent(z))*l*Stree(z)/(l-Stree(z))) 

The second batch (labelled “complexity descriptors”) represents generating functions of procedures’ Costs. 
These equations are then solved by a SOLVER programme w-ritten in Maple. The solution is here expressed 
in terms of L(y) = log(1- y)-l and of Maple’s W-function which is dehed (implicitly) by W(z)eW(”) = Z.  

tau-number-of_components(z) = exp(L(- z W(- z))) L(- z W(- 2)) 

At this stage, an ANALYTIC ANALYZER with extensive asymptotic capabilities, takes control of the 
asymptotic analysis [40j. It is built on a large library of Maple programmes (currently about 7000 lines), 
and on this problem, it selects a strategy based on singularity analysis. The number of special functional 
graphs (Sfungraph) of size n then appears in its raw form produced by the system as: 

... n! times: 
3/2 1/2 2 

exp(-l) 2 exp(l/2) exp(-1/2) exp(n) exp(n> 
) + (a(--------)) (1/2 ------------____________________________---- 

2 1/2 3/2 2 
(1 - exp(-l)) Pi n n 

a formula which, after going through Maple’s simplifier and I&T$ interface yields verbatim 

The system then computes total costs (i.e., total values of parameters over all structures of size n) via 
their generating functions. From there, mean value estimates follow. For instance, in the case of the average 
number of components, we get the following message 

Floating point evaluation: 
1 

1/2 
(1.458676144) + (O(------)I 

n 
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Figure 4. A rendering due to Quisquater and Delescaille of the “giant component” in a functional graph 
representing an iteration srructure of the DES cryptosystem. The DES is used here as an iterator on a set 
of cardinality 256 by letting its “output” loop on its “key” entry (keeping the “message”fixed). The drawing 
represents a skeleton graph where approximately 1 in every l o 6  points is sampled. Such graphs are discussed 
in 136, 371. 

where the symbolic form of the constant 1.4586 was also determined in passing by the system: 

1 - log(1 - e-1). 

Similarly, for the number of cyclic points, we obtain 

Floating point  evaluation: 

(2.163953412) + (O(------)) 
1 / 2  

n 

with the symbolic form of the constant being 

In total, within a few minutes of symbolic computations. the system, starting from formal spec- 
ifications, has determined first symbolically, then numerically, that: (2)  the expected number of 
components is - 1.45; (ii) the expected number of points lying on cycles is N 2.16. This exam- 
ple demonstrates an unusual case of model sensitivity (compare with the corresponding values of 
O(1ogn) and O ( m  for unconstrained random mappings). The precise capabilities of the system 
are described in [14, 1.5, 40, 461. 

6 Conclusions 
We have seen a systematic approach to the analysis of a large number of parameters of random 
mappings (or functional graphs) using a coherent generating function framework. 

In a random mapping of size n, cycles presents themselves after about 6 iteration steps (Sec- 
tion 2), and this phenomenon is fairly unavoidable since the expected diameter is also O ( f l  (Sec- 
tion 3). Also, random functional graphs tend to  have one giant component and a few large trees. 
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These facts are well illustrated by extensive computations performed by J-J. Quisquater with the 
DES cryptographic system (see Fig. 4 and [36, 371). Simulations with shift register sequences [l] 
or with Pollard’s algorithm [33] (i.e., quadratic functions), as well as Bach’s theoretical results [2] 
also confirm the frequent validity of predictions based on the heuristic random mapping model for 
various applications in cryptography, random number generation, computational number theory, or 
the analysis of algorithms. 
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